If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-8b+13=17
We move all terms to the left:
b^2-8b+13-(17)=0
We add all the numbers together, and all the variables
b^2-8b-4=0
a = 1; b = -8; c = -4;
Δ = b2-4ac
Δ = -82-4·1·(-4)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{5}}{2*1}=\frac{8-4\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{5}}{2*1}=\frac{8+4\sqrt{5}}{2} $
| 60+4p+2p=180 | | 7x+4(-3x+6)=-7x+38 | | z=6z=6 | | -8(x+4)=120 | | 21x=23x-15=72 | | 23=3/4r | | 670=t+-93 | | -164-5x=-11x+58 | | 3z+9=180 | | 90+w+30+4w=180 | | 26=r-791 | | -2x+104=-4(2x-149) | | 8x+16=10x-9 | | m^2+18m+76=0 | | -8x=56 | | 8x=56 | | 1/2x+5=3/2x-61 | | 4t-15=31 | | −3(x+2)−4(2x−1)=2(−2x+4) | | -2(x-12)=4x-120 | | 777=d+-208 | | 5=10/b | | 2m+(m-8)=1 | | 4x+13=-6x-32 | | 6-2/3}x=-8 | | 4x+12x=2+15x | | 9x=819 | | y^2-18y+62=0 | | x/2+5=65 | | n/27=21 | | 3u+2u+u+24=180 | | 4x=16-9 |